Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Slimformer—Self-Limiting Transformer Pre-Prototype and Pilot Plant Design, Construction, and Tests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Vajda, I. ; Dept. of Electr. Power Eng., Budapest Univ. of Technol. & Econ., Budapest, Hungary ; Hyde, A. ; Gyore, A. ; Nador, G.
more authors

The current limiting or self-limiting transformer, (CLT) is a multifunctional device, which combines the functions of a power transformer with the functions of a current limiter. The investigated SLIMFormer consists of a room temperature primary winding and a secondary high temperature superconductor (HTS) winding (BSCCO 2223) divided into two parts located on different limbs and up to 4 HTS ring (BSCCO 2212). The primary winding is connected to the electrical network, the secondary winding is intended to supply an HTS cable. As a result the SLIMFormer is an inductive terminal between the room temperature network and a projected HTS cable. For investigation of the SLIMFormer a 100 kVA rating experimental device (pilot plant) was designed, built and tested. The design and optimization aspects as well as the construction of the pilot plant will be presented. The present work is based on the previous 20 kVA SLIMFormer pre-prototype device which was tested at Lab of DEPE BME. The SLIMFormer was investigated experimentally for both sudden short circuit and steady-state (transformer) operational modes. The activation currents were determined for both operational modes with the rated secondary winding turn ratio. SLIMFormer work is being performed as part of an EC funded project, project name: acronym SLIMFormer.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )