By Topic

Toward a globally robust decentralized control for large-scale power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haibo Jiang ; Robinson Humphries Co., Atlanta, GA, USA ; Hongzhi Cai ; Dorsey, J.F. ; Zhihua Qu

A robust control scheme is presented that stabilizes a nonlinear model of a power system to a very large class of disturbances that includes any disturbances causing the system to exhibit sustained oscillation. The disturbance can be anywhere in the power system. The fact that the improvement in stability is significant and system wide leads to the name globally robust control. The control is local or decentralized in the sense that the control of each generator depends only on information available at that generator, and is derived using Lyapunov's direct method. The derivation is quite general, permitting a second-order representation of the turbine/governor and any generator model. Simulation results are presented which show the effectiveness of the proposed control against instabilities of current importance including sustained oscillations following a major system disturbance such as a fault or major line outage. The control is also effective for steady-state operation

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:5 ,  Issue: 3 )