Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Constructive algorithms for structure learning in feedforward neural networks for regression problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tin-Yau Kwok ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., Kowloon, Hong Kong ; Dit-Yan Yeung

In this survey paper, we review the constructive algorithms for structure learning in feedforward neural networks for regression problems. The basic idea is to start with a small network, then add hidden units and weights incrementally until a satisfactory solution is found. By formulating the whole problem as a state-space search, we first describe the general issues in constructive algorithms, with special emphasis on the search strategy. A taxonomy, based on the differences in the state transition mapping, the training algorithm, and the network architecture, is then presented

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 3 )