Cart (Loading....) | Create Account
Close category search window
 

Neural networks for convex hull computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yee Leung ; Dept. of Geogr., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; Jiang-She Zhang ; Zong-Ben Xu

Computing convex hull is one of the central problems in various applications of computational geometry. In this paper, a convex hull computing neural network (CHCNN) is developed to solve the related problems in the N-dimensional spaces. The algorithm is based on a two-layered neural network, topologically similar to ART, with a newly developed adaptive training strategy called excited learning. The CHCNN provides a parallel online and real-time processing of data which, after training, yields two closely related approximations, one from within and one from outside, of the desired convex hull. It is shown that accuracy of the approximate convex hulls obtained is around O[K-1(N-1/)], where K is the number of neurons in the output layer of the CHCNN. When K is taken to be sufficiently large, the CHCNN can generate any accurate approximate convex hull. We also show that an upper bound exists such that the CHCNN will yield the precise convex hull when K is larger than or equal to this bound. A series of simulations and applications is provided to demonstrate the feasibility, effectiveness, and high efficiency of the proposed algorithm

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 3 )

Date of Publication:

May 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.