By Topic

Implementations of artificial neural networks using current-mode pulse width modulation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
El-Masry, E. ; King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Yang, H.-K. ; Yakout, M.A.

The use of a current-mode pulse width modulation (CM-PWM) technique to implement analog artificial neural networks (ANNs) is presented. This technique can be used to efficiently implement the weighted summation operation (WSO) that are required in the realization of a general ANN. The sigmoidal transformation is inherently performed by the nonlinear transconductance amplifier, which is a key component in the current integrator used in the realization of WSO. The CM-PWM implementation results in a minimum silicon area, and therefore is suitable for very large scale neural systems. Other pronounced features of the CM-PWM implementation are its easy programmability, electronically adjustable gains of neurons, and modular structures. In this paper, all the current-mode CMOS circuits (building blocks) required for the realization of CM-PWM ANNs are presented and simulated. Four modules for modular design of ANNs are introduced. Also, it is shown that the CM-PWM technique is an efficient method for implementing discrete-time cellular neural networks (DT-CNNs). Two application examples are given: a winner-take-all circuit and a connected component detector

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 3 )