By Topic

Enhancing Bag-of-Words Models with Semantics-Preserving Metric Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Wu ; Michigan State University ; Steven C. H. Hoi

The authors present an online semantics preserving, metric learning technique for improving the bag-of-words model and addressing the semantic-gap issue. This article investigates the challenge of reducing the semantic gap for building BoW models for image representation; propose a novel OSPML algorithm for enhancing BoW by minimizing the semantic loss, which is efficient and scalable for enhancing BoW models for large-scale applications; apply the proposed technique for large-scale image annotation and object recognition; and compare it to the state of the art.

Published in:

IEEE MultiMedia  (Volume:18 ,  Issue: 1 )