By Topic

Analysis and further results on adaptive entropy-coded quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harrison, D.D. ; General Electric Co., Schenectady, NY, USA ; Modestino, J.W.

Buffer underflow and overflow problems associated with entropy coding are completely eliminated by effectively imposing reflecting walls at the buffer endpoints. Synchronous operation of the AECQ (adaptive entropy-coded quantizer) encoder and decoder is examined in detail, and it is shown that synchronous operation is easily achieved without side information. A method is developed to explicitly solve for the buffer-state probability distribution and the resulting average distortion when memoryless buffer-state feedback is used as well as when the source is stationary and memoryless. This method is then used as a tool in the design of low-distortion AECQ systems, with particular attention given to developing source scale-invariant distortion performance. It is shown that the introduction of reflecting buffer walls in a properly designed AECQ system results in a very small rate-distortion performance penalty and that the resulting AECQ system can be an extremely simple and effective solution to the stationary memoryless source-coding problem for a wide range of source types. Operation with nonstationary sources is also examined

Published in:

Information Theory, IEEE Transactions on  (Volume:36 ,  Issue: 5 )