By Topic

Power Delivery for Multicore Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aida Todri ; Fermi National Accelerator Laboratory, Batavia, IL, USA ; Malgorzata Marek-Sadowska

As the industry moves from single- to multicore processors, the challenges of how to reliably design and analyze power delivery for such systems arise. We study various workload assignments to cores and their effect on the global power supply noise and ground bounce. We provide a detailed analysis of single and multiple cores and develop analytical formulas to capture the power supply noise and ground bounce of the system. We introduce metrics to estimate the amount of noise propagated from core to core and propose a supply noise aware workload assignment method. In our experiments, we show that timing constraints can be significantly affected if workload assignments are not properly made.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:19 ,  Issue: 12 )