By Topic

Performance of a Prototype Traveling-Wave Actuator Made From a Dielectric Elastomer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alan D. Poole ; Department of Mechanical Engineering , University of Bristol, Bristol, U.K. ; Julian David Booker ; Clive L. Wishart ; Neville McNeill
more authors

The primary aim of the research is to demonstrate the fabrication and operation of a traveling wave actuator made from a silicone dielectric elastomer. Multiple folded stack configurations of a silicone are assembled to create individually controllable regions in a single device, allowing a traveling-wave pattern of electrical stimuli to be applied to each active region. The prototype actuator is sandwiched between two friction surfaces allowing motion in response to the traveling wave. A number of issues related to the research and development of the prototype actuator are considered, including traveling-wave principle, folded stack design, actuator fabrication, and electrical control. A prototype is tested with a bespoke multiple-channel high-voltage converter to assess the performance characteristics of stroke, force, and frequency. Practical velocities and forces are achieved; however, a number of challenges are discussed in order to increase performance to comparable levels exhibited by commercial actuators with high-force long-stroke capabilities.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:17 ,  Issue: 3 )