By Topic

Prediction of Biomechanical Properties of Trabecular Bone in MR Images With Geometric Features and Support Vector Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huber, M.B. ; Depts. of Imaging Sci. & Biomed. Eng., Univ. of Rochester, Rochester, NY, USA ; Lancianese, S.L. ; Nagarajan, M.B. ; Ikpot, I.Z.
more authors

Whole knee joint MR image datasets were used to compare the performance of geometric trabecular bone features and advanced machine learning techniques in predicting biomechanical strength properties measured on the corresponding ex vivo specimens. Changes of trabecular bone structure throughout the proximal tibia are indicative of several musculoskeletal disorders involving changes in the bone quality and the surrounding soft tissue. Recent studies have shown that MR imaging also allows non-invasive 3-D characterization of bone microstructure. Sophisticated features like the scaling index method (SIM) can estimate local structural and geometric properties of the trabecular bone and may improve the ability of MR imaging to determine local bone quality in vivo. A set of 67 bone cubes was extracted from knee specimens and their biomechanical strength estimated by the yield stress (YS) [in MPa] was determined through mechanical testing. The regional apparent bone volume fraction (BVF) and SIM derived features were calculated for each bone cube. A linear multiregression analysis (MultiReg) and a optimized support vector regression (SVR) algorithm were used to predict the YS from the image features. The prediction accuracy was measured by the root mean square error (RMSE) for each image feature on independent test sets. The best prediction result with the lowest prediction error of RMSE = 1.021 MPa was obtained with a combination of BVF and SIM features and by using SVR. The prediction accuracy with only SIM features and SVR (RMSE = 1.023 MPa) was still significantly better than BVF alone and MultiReg (RMSE = 1.073 MPa). The current study demonstrates that the combination of sophisticated bone structure features and supervised learning techniques can improve MR-based determination of trabecular bone quality.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 6 )