By Topic

A Review of Adaptive Image Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Peyré, G. ; CEREMADE CNRS, Univ. Paris-Dauphine, Paris, France

Improving the modeling of natural images is important to go beyond the state-of-the-art for many image processing tasks such as compression, denoising, inverse problems, and texture synthesis. Natural images are composed of intricate patterns such as regular areas, edges, junctions, oriented oscillations, and textures. Processing efficiently such a wide range of regularities requires methods that are adaptive to the geometry of the image. This adaptivity can be achieved using sparse representations in a redundant dictionary. The geometric adaptivity is important to search for efficient representations in a structured dictionary. Another way to capture this geometry is through non-local interactions between patches in the image. The resulting non-local energies can be used to perform an adaptive image restoration. This paper reviews these emerging technics and shows the interplay between sparse and non-local regularizations.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 5 )