Cart (Loading....) | Create Account
Close category search window
 

Performance Evaluation of IR-UWB in Short-Range Fiber Communication Using Linear Combination of Monocycles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Abraha, S.T. ; Electr. Eng./COBRA, Eindhoven Univ. Of Technol., Eindhoven, Netherlands ; Okonkwo, C. ; Hejie Yang ; Visani, D.
more authors

We present the performance evaluation of impulse radio ultrawideband (IR-UWB) over fiber using a simple pulse design technique with a high fractional bandwidth. The technique, based on the linear combination of the first-order Gaussian derivatives with different pulse-shaping factors, shows full compliance with Federal Communications Commission mask requirements even in the most severely power-restricted GPS band. We validated our approach with experiments employing an intensity-modulation direct-detection scheme. The experimental setup uses a directly modulated DFB laser at 1302.56 nm and a multimode fiber-coupled photodetector with 24 μm diameter photosensitive area. The transmission link consists of 25 km single-mode fiber or 4.4 km multimode fiber. Error-free transmission at 2 Gb/s is achieved over both fiber links. The result shows the proposed pulse-generation technique to be simple and cost-effective compared to higher order Gaussian derivative schemes. This can be implemented successfully to distribute UWB signals over optical links for access and in-building networks.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 8 )

Date of Publication:

April15, 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.