By Topic

Design of line-source antennas for narrow beamwidth and low side lobes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
T. T. Taylor ; California Institute of Technology, Pasadena, Calif.; formerly Research Physicist, Hughes Aircraft Co., Culver City, Calif.

It is well known that the phenomenon of radiation from line-source antennas is very similar to that of the diffraction of light from narrow apertures. Unlike the optical situation, however, antenna design technique permits the use of other-than-uniform distributions of field across the antenna aperture. Line source synthesis is the science of choosing this distribution function to give a radiation pattern with prescribed properties such as, for example, narrow angular width of the main lobe and low side lobes. In the present article the mathematical relationships involved in the radiation calculation are studied from the point of view of function theory. Some conclusions are drawn which outline the major aspects of synthesis technique very clearly. In particular, the problem of constructing a line source with an optimum compromise between beamwidth and side-lobe level (analogous to the Dolph - Tchebycheff problem in linear array theory) is considered. The ideal pattern is cos π √ {u /sup 2/ - A/sup 2/} , where u = (2a/λ) cos θ, a is the half-length of the source, and cosh π A is the side-lobe ratio. Because of theoretical limitations, this pattern cannot be obtained from a physically realizable antenna; nevertheless its ideal characteristics can be approached arbitrarily closely. The procedure for doing this is given in detail.

Published in:

Transactions of the IRE Professional Group on Antennas and Propagation  (Volume:3 ,  Issue: 1 )