By Topic

Efficient Network-Coding-Based Opportunistic Routing Through Cumulative Coded Acknowledgments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dimitrios Koutsonikolas ; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA ; Chih-Chun Wang ; Y. Charlie Hu

The use of random linear network coding (NC) has significantly simplified the design of opportunistic routing (OR) protocols by removing the need of coordination among forwarding nodes for avoiding duplicate transmissions. However, NC-based OR protocols face a new challenge: How many coded packets should each forwarder transmit? To avoid the overhead of feedback exchange, most practical existing NC-based OR protocols compute offline the expected number of transmissions for each forwarder using heuristics based on periodic measurements of the average link loss rates and the ETX metric. Although attractive due to their minimal coordination overhead, these approaches may suffer significant performance degradation in dynamic wireless environments with continuously changing levels of channel gains, interference, and background traffic. In this paper, we propose CCACK, a new efficient NC-based OR protocol. CCACK exploits a novel Cumulative Coded ACKnowledgment scheme that allows nodes to acknowledge network-coded traffic to their upstream nodes in a simple way, oblivious to loss rates, and with negligible overhead. Through extensive simulations and testbed experiments, we show that CCACK greatly improves both throughput and fairness compared to MORE, a state-of-the-art NC-based OR protocol.

Published in:

IEEE/ACM Transactions on Networking  (Volume:19 ,  Issue: 5 )