By Topic

Subtype specific breast cancer event prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Herman Sontrop ; Philips Research, High Tech Campus 12a, 5656 AE Eindhoven, The Netherlands ; Wim Verhaegh ; RenĂ© van den Ham ; Marcel Reinders
more authors

We investigate the potential to enhance breast cancer event predictors by exploiting subtype information. We do this with a two-stage approach that first determines a sample's subtype using a recent module-driven approach, and secondly constructs a subtype-specific predictor to predict a metastasis event within five years. Our methodology is validated on a large compendium of microarray breast cancer datasets, including 43 replicate array pairs for assessing subtyping stability. Note that stratifying by subtype strongly reduces the training set sizes available to construct the individual predictors, which may decrease performance. Besides sample size, other factors like unequal class distributions and differences in the number of samples per subtype, easily obscure a fair comparison between subtype-specific predictors constructed on different subtypes, but also between subtype specific and subtype a-specific predictors. Therefore, we constructed a completely balanced experimental design, in which none of the above factors play a role and show that subtype-specific event predictors clearly outperform predictors that do not take subtype information into account.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2010 IEEE International Workshop on

Date of Conference:

10-12 Nov. 2010