Cart (Loading....) | Create Account
Close category search window
 

Optimal perturbation control of gene regulatory networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouaynaya, N. ; Dept. of Syst. Eng., Univ. of Arkansas at Little Rock, Little Rock, AR, USA ; Shterenberg, R. ; Schonfeld, D.

We formulate the control problem in gene regulatory networks as an inverse perturbation problem, which provides the feasible set of perturbations that force the network to transition from an undesirable steady-state distribution to a desirable one. We derive a general characterization of such perturbations in an appropriate basis representation. We subsequently consider the optimal perturbation, which minimizes the overall energy of change between the original and controlled (perturbed) networks. The “energy” of change is characterized by the Euclidean-norm of the perturbation matrix. We cast the optimal control problem as a semi-definite programming (SDP) problem, thus providing a globally optimal solution which can be efficiently computed using standard SDP solvers. We apply the proposed control to the Human melanoma gene regulatory network and show that the steady-state probability mass is shifted from the undesirable high metastatic states to the chosen steady-state probability mass.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2010 IEEE International Workshop on

Date of Conference:

10-12 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.