Cart (Loading....) | Create Account
Close category search window
 

Secure and Robust Iris Recognition Using Random Projections and Sparse Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pillai, J.K. ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Patel, V.M. ; Chellappa, R. ; Ratha, N.K.

Noncontact biometrics such as face and iris have additional benefits over contact-based biometrics such as fingerprint and hand geometry. However, three important challenges need to be addressed in a noncontact biometrics-based authentication system: ability to handle unconstrained acquisition, robust and accurate matching, and privacy enhancement without compromising security. In this paper, we propose a unified framework based on random projections and sparse representations, that can simultaneously address all three issues mentioned above in relation to iris biometrics. Our proposed quality measure can handle segmentation errors and a wide variety of possible artifacts during iris acquisition. We demonstrate how the proposed approach can be easily extended to handle alignment variations and recognition from iris videos, resulting in a robust and accurate system. The proposed approach includes enhancements to privacy and security by providing ways to create cancelable iris templates. Results on public data sets show significant benefits of the proposed approach.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 9 )
Biometrics Compendium, IEEE

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.