Cart (Loading....) | Create Account
Close category search window
 

On the Market Power of Network Coding in P2P Content Distribution Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinyu Zhang ; Univ. of Michigan, Ann Arbor, MI, USA ; Baochun Li

Network coding is emerging as a promising alternative to traditional content distribution approaches in P2P networks. By allowing information mixture and randomized block selection, it simplifies the block scheduling problem, resulting in more efficient data delivery. Existing protocols have validated such advantages assuming altruistic and obedient peers. In this paper, we develop an analytical framework that characterizes a coding-based P2P content distribution market where rational agents seek for individual payoff maximization. Unlike existing game theoretical models, we focus on a decentralized resale market-through virtual monetary exchanges, agents buy the coded blocks from others and resell their possessions to those in need. We model such transactions as decentralized strategic bargaining games, and derive the equilibrium prices between arbitrary pairs of agents when the market enters the steady state. We further characterize the relations between coding complexity and market properties including agents' entry price and expected payoff, thus providing guidelines for strategic operations in a real P2P market. Our analysis reveals that the major power of network coding lies in maintaining stability of the market with impatient agents, and incentivizing agents with lower price and higher payoff, at the cost of reasonable coding complexity. Since the traditional P2P content distribution approach is a special case of network coding, our model can be generalized to analyze the equilibrium strategies of rational agents in decentralized resale markets.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.