By Topic

Mobility in IPv6: Whether and How to Hierarchize the Network?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shengling Wang ; Chinese Academy of Sciences, Beijing ; Yong Cui ; Sajal K. Das ; Wei Li
more authors

Mobile IPv6 (MIPv6) offers a basic solution to support mobility in IPv6 networks. Although Hierarchical MIPv6 (HMIPv6) has been designed to enhance the performance of MIPv6 by hierarchizing the network, it does not always outperform MIPv6. In fact, two solutions have different application scopes. Existing work studies the impact of various parameters on the performance of MIPv6 and HMIPv6, but without analyzing their application scopes. In this paper, we propose a model to analyze the application scopes of MIPv6 and HMIPv6, through which an Optimal Choice of Mobility Management (OCMM) scheme is designed. Different from the existing work that either propose new mobility management schemes or enhance existing mobility management schemes, OCMM chooses the better alternative between MIPv6 and HMIPv6 according to the mobility and service characteristics of users, addressing whether to hierarchize the network. Besides that, OCMM chooses the best mobility anchor point and regional size when HMIPv6 is adopted, addressing how to hierarchize the network. Simulation results demonstrate the impact of key parameters on the application scopes of MIPv6 and HMIPv6 as well as the optimal regional size of HMIPv6. Finally, we show that OCMM outperforms MIPv6 and HMIPv6 in terms of total cost including average registration and packet delivery costs.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:22 ,  Issue: 10 )