By Topic

Distributed Asynchronous Constrained Stochastic Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Srivastava, K. ; Ind. & Enterprise Syst. Eng. (ISE) Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Nedic, A.

In this paper, we study two problems which often occur in various applications arising in wireless sensor networks. These are the problem of reaching an agreement on the value of local variables in a network of computational agents and the problem of cooperative solution to a convex optimization problem, where the objective function is the aggregate sum of local convex objective functions. We incorporate the presence of a random communication graph between the agents in our model as a more realistic abstraction of the gossip and broadcast communication protocols of a wireless network. An added ingredient is the presence of local constraint sets to which the local variables of each agent is constrained. Our model allows for the objective functions to be nondifferentiable and accommodates the presence of noisy communication links and subgradient errors. For the consensus problem we provide a diminishing step size algorithm which guarantees asymptotic convergence. The distributed optimization algorithm uses two diminishing step size sequences to account for communication noise and subgradient errors. We establish conditions on these step sizes under which we can achieve the dual task of reaching consensus and convergence to the optimal set with probability one. In both cases we consider the constant step size behavior of the algorithm and establish asymptotic error bounds.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 4 )