Cart (Loading....) | Create Account
Close category search window
 

P2DAP — Sybil Attacks Detection in Vehicular Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tong Zhou ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Choudhury, R.R. ; Peng Ning ; Chakrabarty, K.

Vehicular ad hoc networks (VANETs) are being increasingly advocated for traffic control, accident avoidance, and management of parking lots and public areas. Security and privacy are two major concerns in VANETs. Unfortunately, in VANETs, most privacy-preserving schemes are vulnerable to Sybil attacks, whereby a malicious user can pretend to be multiple (other) vehicles. In this paper, we present a lightweight and scalable protocol to detect Sybil attacks. In this protocol, a malicious user pretending to be multiple (other) vehicles can be detected in a distributed manner through passive overhearing by s set of fixed nodes called road-side boxes (RSBs). The detection of Sybil attacks in this manner does not require any vehicle in the network to disclose its identity; hence privacy is preserved at all times. Simulation results are presented for a realistic test case to highlight the overhead for a centralized authority such as the DMV, the false alarm rate, and the detection latency. The results also quantify the inherent trade-off between security, i.e., the detection of Sybil attacks and detection latency, and the privacy provided to the vehicles in the network. From the results, we see our scheme being able to detect Sybil attacks at low overhead and delay, while preserving privacy of vehicles.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.