By Topic

High-Frequency Thermally Actuated Electromechanical Resonators With Piezoresistive Readout

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amir Rahafrooz ; Department of Electrical and Computer Engineering, University of Denver, Denver, CO, USA ; Siavash Pourkamali

This paper presents fabrication, characterization, and modeling of micro/nanoelectromechanical high-frequency resonators actuated using thermal forces with piezoresistive readout. Thermally actuated single-crystalline silicon resonators with frequencies (up to 61 MHz) have been successfully demonstrated. It is shown both theoretically and experimentally that, as opposed to the general perception, thermal actuation can be a viable actuation mechanism for high-frequency resonators, and using appropriate design guidelines, this actuation mechanism could even be more suitable for higher frequency rather than lower frequency applications. It has been shown through comprehensive thermoelectro-mechanical modeling that thermal-piezoresistive nanomechanical resonators with frequencies in the gigahertz range can exhibit motional conductance values as high as 1 mA/V while consuming static power as low as a few microwatts.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 4 )