Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A Reweighted Least Squares Approach to QAM Detector for Blind Equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Konishi, K. ; Dept. of Comput. Sci., Kogakuin Univ., Tokyo, Japan ; Furukawa, T.

This letter proposes a reweighted least squares algorithm for quadrature amplitude modulation (QAM) detector in blind equalization. Because the QAM detection problem is a non-convex combinatorial optimization problem, it is relaxed into a problem of minimizing the sum of logarithmic functions in order to overcome the combinatorial complexity. To find a local optimal solution of the problem, an iterative reweighted least squares based algorithm is proposed. Simulation results show that the proposed algorithm improves the accuracy of QAM detection in blind equalization.

Published in:

Signal Processing Letters, IEEE  (Volume:18 ,  Issue: 4 )