By Topic

Microwatt Embedded Processor Platform for Medical System-on-Chip Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Sridhara, S.R. ; Texas Instrum., Dallas, TX, USA ; DiRenzo, M. ; Lingam, S. ; Seok-Jun Lee
more authors

Battery life specifications drive the power consumption requirements of integrated circuits in implantable, wearable, and portable medical devices. In this paper, we present an embedded processor platform chip using an ARM Cortex-M3 suitable for mapping medical applications requiring microwatt power consumption. Ultra-low-power operation is achieved via 0.5-1.0 V operation, a 28 fW/bit fully differential subthreshold 6T SRAM, a 90%-efficient DC-DC converter, and a 100-nJ fast Fourier transform (FFT) accelerator to reduce processor workload. Using a combination of novel circuit design, system architecture, and SoC implementation, the first sub-microwatt per channel electroencephalograph (EEG) seizure detection is demonstrated.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 4 )