Cart (Loading....) | Create Account
Close category search window

High-Frequency Behavior of Graphene-Based Interconnects—Part II: Impedance Analysis and Implications for Inductor Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sarkar, D. ; Electr. & Comput. Eng. Dept., Univ. of California, Santa Barbara, CA, USA ; Chuan Xu ; Hong Li ; Banerjee, K.

This paper provides the first detailed insights into the ultrahigh-frequency behavior of graphene ribbons (GRs) and analyzes their consequences in designing interconnects and low-loss on-chip inductors. In the companion paper (part I), an accurate impedance modeling methodology has been developed based on the Boltzmann equation with the magnetic vector potential Green's function approach incorporating the dependency of current on the nonlocal electric field. Based on the developed methodology, this paper for the first time embarks on the rigorous investigation of the intricate processes occurring at high frequencies in GRs, such as anomalous skin effect (ASE), high-frequency resistance and inductance saturation, intercoupled relation between edge specularity and ASE, and the influence of the linear dimensions on impedance. A comparative study of the high-frequency response of GRs with that of carbon nanotubes (CNTs) and Cu is made to highlight the potential of GR interconnects for high-frequency applications. Subsequently, the high-frequency performance of GR inductors is analyzed, and it is shown that they can achieve 32% and 50% improvements in maximum Q-factor compared to Cu and single-walled CNT inductors with 1/3 metallic fraction, respectively.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.