By Topic

Nonlinearity correction of the integrated time-to-digital converter with direct coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Pelka ; Mil. Univ. of Technol., Warsaw, Poland ; J. Kalisz ; R. Szplet

A method is presented for automated identification and correction of the nonlinearity error of the time-to-digital converter (TDC) with delay-line coding and 200 ps resolution, integrated on a single Field Programmable Gate Array (FPGA) device. The nonlinearity error is estimated using a statistical method based on a sufficiently large number N of measurements of random input time intervals having a uniform distribution within the input range of TDC. Then, the resulting estimate of the error function is used for training a two-layer neural network (NN) designed for correction of the nonlinearity error. Training of the NN is based on the fast Levenberg-Marquardt (LM) learning rule and the goal is to minimize the maximum nonlinearity error of the TDC. Experimental tests have shown, that using a relatively small number of N=5×104 identification measurements the maximum nonlinearity error of a TDC may be reduced from 1.37 LSB (least significant bit) to about 0.12 LSB (24 ps)

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:46 ,  Issue: 2 )