By Topic

Robust consensus tracking of a class of second-order multi-agent dynamic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Guoqiang Hu ; Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, 66506, USA

In this paper, a robust consensus tracking problem for a class of second-order multi-agent systems has been addressed in the presence of disturbances and unmodeled dynamics. The desired trajectory to be tracked is only provided to a small group of team members. An identifier is developed to estimate the unknown disturbances and unmodeled dynamics. A continuous consensus tracking controller is developed based on this identifier to achieve asymptotic consensus tracking using the local information obtained from neighboring agents. A sufficient condition is derived to ensure consensus tracking and asymptotic stability of the closed-loop system using algebraic graph theory, Lyapunov-based analysis, and an invariance-like theorem. Numerical simulations are provided to demonstrate the effectiveness of the developed robust consensus controller.

Published in:

49th IEEE Conference on Decision and Control (CDC)

Date of Conference:

15-17 Dec. 2010