By Topic

Modeling and control of nonlinear systems using novel fuzzy wavelet networks: The modeling approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ebadat, A. ; Power & Control Eng. Dept., Univ. of Shiraz, Shiraz, Iran ; Noroozi, N. ; Safavi, A.A. ; Mousavi, S.H.

In this paper a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserves the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging centre of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks.

Published in:

Decision and Control (CDC), 2010 49th IEEE Conference on

Date of Conference:

15-17 Dec. 2010