Cart (Loading....) | Create Account
Close category search window
 

Controller synthesis for input-output LPV models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali, M. ; Inst. of Control Syst., Hamburg Univ. of Technol., Hamburg, Germany ; Abbas, H. ; Werner, H.

This paper considers the synthesis of linear parameter-varying (LPV) controllers for plant models given in input-output LPV form. For SISO systems, a method for synthesizing LPV gain-scheduled controllers in input-output form has been proposed recently, where the a priori choice of a central polynomial plays a critical role, and the synthesis problem is solved using a sum-of-squares relaxation. In this paper we propose a way of simplifying this design procedure, by replacing the sum-of-squares approach by representing the closed-loop model in polytopic input-output LPV form and then using a gradient-based optimization to solve the synthesis BMI. In this procedure the central polynomial is tuned while the closed-loop performance index is minimized over the decision variables, which include the controller parameters. The proposed method is illustrated with simulation examples.

Published in:

Decision and Control (CDC), 2010 49th IEEE Conference on

Date of Conference:

15-17 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.