Cart (Loading....) | Create Account
Close category search window
 

A numerical method for the optimal control of switched systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gonzalez, H. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA ; Vasudevan, R. ; Kamgarpour, M. ; Sastry, S.S.
more authors

Switched dynamical systems have shown great utility in modeling a variety of systems. Unfortunately, the determination of a numerical solution for the optimal control of such systems has proven difficult, since it demands optimal mode scheduling. Recently, we constructed an optimization algorithm to calculate a numerical solution to the problem subject to a running and final cost. In this paper, we modify our original approach in three ways to make our algorithm's application more tenable. First, we transform our algorithm to allow it to begin at an infeasible point and still converge to a lower cost feasible point. Second, we incorporate multiple objectives into our cost function, which makes the development of an optimal control in the presence of multiple goals viable. Finally, we extend our approach to penalize the number of hybrid jumps. We also detail the utility of these extensions to our original approach by considering two examples.

Published in:

Decision and Control (CDC), 2010 49th IEEE Conference on

Date of Conference:

15-17 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.