By Topic

Relationship between power loss and network topology in power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lavaei, J. ; Dept. of Control & Dynamical Syst., California Inst. of Technol., Pasadena, CA, USA ; Low, S.H.

This paper is concerned with studying how the minimum power loss in a power system is related to its network topology. The existing algorithms in the literature all exploit nonlinear, heuristic, or local search algorithms to find the minimum power loss, which make them blind to the network topology. Given certain constraints on power level, bus voltages, etc., a linear-matrix-inequality (LMI) optimization problem is derived, which provides a lower bound on the minimum active loss in the network. The proposed LMI problem has the property that its objective function depends on the loads and its matrix inequality constraint is related to the topology of the power system. This property makes it possible to address many important power problems, such as the optimal network reconfiguration and the optimal placement/sizing of distributed generation units in power systems. Moreover, a condition is provided under which the solution of the given LMI problem is guaranteed to be exactly equal to the minimum power loss. As justified mathematically and verified on IEEE test systems, this condition is expected to hold widely in practice, implying that a practical power loss minimization problem is likely to be solvable using a convex algorithm.

Published in:

Decision and Control (CDC), 2010 49th IEEE Conference on

Date of Conference:

15-17 Dec. 2010