By Topic

A geometric transversals approach to analyzing track coverage of omnidirectional sensor networks for maneuvering targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bernard, B. ; Dept. of Mech. Eng., Duke Univ., Durham, NC, USA ; Ferrari, S.

The quality of service of a sensor network performing cooperative track detection can be expressed as the probability of obtaining multiple elementary detections over time, along a target track, also known as track coverage. Recently, distributed search theory and geometric transversals have been used to obtain the probability of track detection for targets traveling with constant speed and heading in a region-of-interest in closed form, as a function of the sensors' ranges and positions, and of the track parameters. In this paper, an extended approach based on convex theory and computational geometry is presented to obtain a track coverage function for maneuvering targets in the plane. In many tracking applications, a maneuvering target is modeled as a Markov motion process with known transition probability functions that are estimated via Kalman filtering from prior sensor measurements. The approach presented in this paper uses line transversals and planar geometry to derive the track coverage of a heterogeneous sensor network as a function of the Markov transition probability functions. The theoretical results are validated through numerical Monte Carlo simulations involving multiple omnidirectional mobile sensors that are deployed to cooperatively detect, track, and eventually pursue one or more maneuvering targets.

Published in:

Decision and Control (CDC), 2010 49th IEEE Conference on

Date of Conference:

15-17 Dec. 2010