By Topic

Statistical Design of Position-Encoded Microsphere Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarder, P. ; Dept. of Biostat., Harvard Sch. of Public Health, Boston, MA, USA ; Nehorai, Arye

We propose a microsphere array device with microspheres having controllable positions for error-free target identification. We conduct a statistical design analysis to select the optimal distance between the microspheres as well as the optimal temperature. Our design simplifies the imaging and ensures a desired statistical performance for a given sensor cost. Specifically, we compute the posterior Cramér-Rao bound on the errors in estimating the unknown target concentrations. We use this performance bound to compute the optimal design variables. We discuss both uniform and sparse concentration levels of targets, and replace the unknown imaging parameters with their maximum likelihood estimates. We illustrate our design concept using numerical examples. The proposed microarray has high sensitivity, efficient packing, and guaranteed imaging performance. It simplifies the imaging analysis significantly by identifying targets based on the known positions of the microspheres. Potential applications include molecular recognition, specificity of targeting molecules, protein-protein dimerization, high throughput screening assays for enzyme inhibitors, drug discovery, and gene sequencing.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:10 ,  Issue: 1 )