By Topic

A laser-activated MEMS transducer for efficient generation of narrowband longitudinal ultrasonic waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xuesheng Chen ; Electrical Systems and Optics Research Division, University of Nottingham, Nottingham, UK ; Theodosia Stratoudaki ; Steve D. Sharples ; Matt Clark

In this paper, we demonstrate an optically powered microelectromechanical system (MEMS) transducer. It was designed and fabricated using MEMS techniques, and can generate narrowband ultrasonic bulk waves from a broadband laser excitation pulse with high efficiency. The transducer is a two-mask-level MEMS device with a microdisk seated on a microsystem. When a laser pulse is incident on the disk center, a resonant flapping motion of the disk is actuated because of the thermomechanical interaction between the absorbing and non-absorbing parts of the disk, coupling a narrowband longitudinal bulk wave propagating along the axis of the stem into the sample. Finite element (FE) methods were used to simulate the generated ultrasound; the results agree well with experimental measurements. Experiments with the fabricated transducers have shown that narrowband ultrasound with a high SNR/amplitude was generated successfully; compared with normal thermoelastic generation, ultrasound with at least 5 times higher amplitude can be achieved by an optimized MEMS transducer. The transducer is inexpensive, compact, and simple to use.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:58 ,  Issue: 2 )