By Topic

An adaptive quantum-inspired differential evolution algorithm for 0–1 knapsack problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hota, A.R. ; Dept. of Electr. Eng., Indian Inst. of Technol., Kharagpur, India ; Pat, A.

Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces. However, the design of its operators makes it unsuitable for many real-life constrained combinatorial optimization problems which operate on binary space. On the other hand, the quantum inspired evolutionary algorithm (QEA) is very well suitable for handling such problems by applying several quantum computing techniques such as Q-bit representation and rotation gate operator, etc. This paper extends the concept of differential operators with adaptive parameter control to the quantum paradigm and proposes the adaptive quantum-inspired differential evolution algorithm (AQDE). The performance of AQDE is found to be significantly superior as compared to QEA and a discrete version of DE on the standard 0-1 knapsack problem for all the considered test cases.

Published in:

Nature and Biologically Inspired Computing (NaBIC), 2010 Second World Congress on

Date of Conference:

15-17 Dec. 2010