By Topic

Hybrid learning fuzzy approach to function approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chunshien Li ; Dept. of Inf. Manage., Nat. Central Univ., Chungli, Taiwan ; Tsunghan Wu ; Tai-Wei Chiang ; Jhao-Wun Hu

A new adaptive fuzzy approach to function approximation is proposed in the paper. A Takagi-Sugeno (T-S) type fuzzy system is used as the function approximator in the study. The proposed approach uses a hybrid learning method to train the T-S fuzzy system to achieve high accuracy in function approximation. The hybrid learning method combines both the particle swarm optimization (PSO) and the recursive least squares estimator (RLSE) to update the parameters of the fuzzy approximator. The PSO is used to update the premise part of the fuzzy system while the consequent part is updated by the RLSE. The PSO-RLSE learning method is very efficient in learning convergence. The proposed approach is compared to other methods. Three benchmark functions are used for the performance comparison. The proposed approach shows superior performance to compared approaches, in terms of approximation accuracy and learning convergence.

Published in:

Intelligent and Advanced Systems (ICIAS), 2010 International Conference on

Date of Conference:

15-17 June 2010