Cart (Loading....) | Create Account
Close category search window
 

Capacity Expansion in the Integrated Supply Network for an Electricity Market

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shan Jin ; Ind. & Manuf. Syst. Eng. Dept., Iowa State Univ., Ames, IA, USA ; Ryan, S.M.

Constraints in fuel supply, electricity generation, and transmission interact to affect the welfare of strategic generators and price-sensitive consumers. We consider a mixed integer bilevel programming model in which the leader makes capacity expansion decisions in the fuel transportation, generation, and transmission infrastructure of the electricity supply network to maximize social welfare less investment cost. Based on the leader's expansion decisions, the multiple followers including the fuel suppliers, ISO, and generation companies simultaneously optimize their respective objectives of cost, social welfare, and profit. The bilevel program is formulated as a mathematical program with complementarity constraints. The computational challenge posed by the discrete character of transmission expansions has been managed by multiple model reformulations. A lower bound provided by a nonlinear programming reformulation increases the efficiency of solving a binary variable reformulation to global optimality. A single-level optimization relaxation serves as a competitive benchmark to assess the effect of generator strategic operational behavior on the optimal capacity configuration.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 4 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.