By Topic

Progress on Detection of Liquid Explosives Using Ultra-Low Field MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Espy, M. ; Los Alamos Nat. Lab., Los Alamos, NM, USA ; Baguisa, S. ; Dunkerley, D. ; Magnelind, P.
more authors

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) methods are widely used in medicine, chemistry and industry. Over the past several years there has been increasing interest in performing NMR and MRI in the ultra-low field (ULF) regime, with measurement field strengths of 10-100 microTesla and pre-polarization fields of 30-50 mTesla. The real-time signal-to-noise ratio for such measurements is about 100. Our group at LANL has built and demonstrated the performance of SQUID-based ULF NMR/MRI instrumentation for classification of materials and detection of liquid explosives via their relaxation properties measured at ULF, using T1, T2, and T1 frequency dispersion. We are also beginning to investigate the performance of induction coils as sensors. Here we present recent progress on the applications of ULF MR to the detection of liquid explosives, in imaging and relaxometry.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )