By Topic

Transient Improvement by Window Transient Enhancement and Overshoot Suppression Techniques in Current Mode Boost Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yean-Kuo Luo ; Inst. of Microelectron., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chao-Chang Chiou ; Chun-Hsien Wu ; Ke-Horng Chen
more authors

In this paper, a current mode boost converter using window transient enhancement (WTE) and overshoot suppression (OSS) technique is presented for digital still camera (DSC) applications. The peak-to-peak transient overshoot voltage demand of a DSC motor driver is generally within 4%-5% of the regulated value. However, conventional boost converters usually fail to pass this criterion during large load transient. The OSS technique reduces the overshoot voltage when load current changes from heavy to very light. Experimental results show that compared with the use of a conventional current mode boost converter, the use of the technique reduces drop voltage about 62% and overshoot voltage about 51% when the load current has a load step of 400 mA. Moreover, the settling time improves to 43%, which is better than in the conventional case of a 400 mA load current step. The overhead of the silicon area is about 4.5% to achieve the overshoot reduction. The estimated high performance demonstrates that it is suitable for DSC applications.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 10 )