By Topic

Tardos Fingerprinting Codes in the Combined Digit Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Skoric, B. ; Dept. of Math. & Comput. Sci., Eindhoven Univ. of Technol., Eindhoven, Netherlands ; Katzenbeisser, S. ; Schaathun, H.G. ; Celik, M.U.

We formalize a new attack model for collusion secure codes, incorporating attacks on the underlying watermarking scheme as well as cut-and-paste attacks traditionally considered for collusion secure codes. We use this model to analyze the collusion resistance of two versions of the Tardos code, both for binary and nonbinary alphabets. The model allows us to consider different signal processing attacks on the content, namely the addition of noise and averaging attacks. The latter may result in content segments that have multiple watermarks embedded. We study two versions of the q-ary Tardos code in which the accusation method has been modified so as to allow for the detection of multiple symbols in the same content segment. We show that both variants yield efficient codes in the new model, parametrized for realistic attacker strengths.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:6 ,  Issue: 3 )