By Topic

Physically Justifiable Die-Level Modeling of Spatial Variation in View of Systematic Across Wafer Variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lerong Cheng ; SanDisk Corp., Milpitas, CA, USA ; Gupta, P. ; Spanos, Costas J. ; Kun Qian
more authors

Modeling spatial variation is important for statistical analysis. Most existing works model spatial variation as spatially correlated random variables. We discuss process origins of spatial variability, all of which indicate that spatial variation comes from deterministic across-wafer variation, and purely random spatial variation is not significant. We analytically study the impact of across-wafer variation and show how it gives an appearance of correlation. We have developed a new die-level variation model considering deterministic across-wafer variation and derived the range of conditions under which ignoring spatial variation altogether may be acceptable. Experimental results show that for statistical timing and leakage analysis, our model is within 2% and 5% error from exact simulation result, respectively, while the error of the existing distance-based spatial variation model is up to 6.5% and 17%, respectively. Moreover, our new model is also faster than the spatial variation model for statistical timing analysis and faster for statistical leakage analysis.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:30 ,  Issue: 3 )