By Topic

Combining Meta-learning and Search Techniques to SVM Parameter Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Taciana A. F. Gomes ; Centro de Inf., Univ. Fed. de Pernambuco, Recife, Brazil ; Ricardo B. C. Prudencio ; Carlos Soares ; Andre L. D. Rossi
more authors

Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of a number of parameters, including for instance the kernel and the regularization parameters. In the current work, we propose the combination of Meta-Learning and search techniques to the problem of SVM parameter selection. Given an input problem, Meta-Learning is used to recommend SVM parameters based on well-succeeded parameters adopted in previous similar problems. The parameters returned by Meta-Learning are then used as initial search points to a search technique which will perform a further exploration of the parameter space. In this combination, we envisioned that the initial solutions provided by Meta-Learning are located in good regions in the search space (i.e. they are closer to the optimum solutions). Hence, the search technique would need to evaluate a lower number of candidate search points in order to find an adequate solution. In our work, we implemented a prototype in which Particle Swarm Optimization (PSO) was used to select the values of two SVM parameters for regression problems. In the performed experiments, the proposed solution was compared to a PSO with random initialization, obtaining better average results on a set of 40 regression problems.

Published in:

2010 Eleventh Brazilian Symposium on Neural Networks

Date of Conference:

23-28 Oct. 2010