By Topic

On the State-Space Realization of LPV Input-Output Models: Practical Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Roland Toth ; Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands ; Hossam Seddik Abbas ; Herbert Werner

A common problem in the context of linear parameter-varying (LPV) systems is how input-output (IO) models can be efficiently realized in terms of state-space (SS) representations. The problem originates from the fact that in the LPV literature discrete-time identification and modeling of LPV systems is often accomplished via IO model structures. However, to utilize these LPV-IO models for control synthesis, commonly it is required to transform them into an equivalent SS form. In general, such a transformation is complicated due to the phenomenon of dynamic dependence (dependence of the resulting representation on time-shifted versions of the scheduling signal). This conversion problem is revisited and practically applicable approaches are suggested which result in discrete-time SS representations that have only static dependence (dependence on the instantaneous value of the scheduling signal). To circumvent complexity, a criterion is also established to decide when an linear-time invariant (LTI)-type of realization approach can be used without introducing significant approximation error. To reduce the order of the resulting SS realization, an LPV Ho-Kalman-type of model reduction approach is introduced, which, besides its simplicity, is capable of reducing even non-stable plants. The proposed approaches are illustrated by application oriented examples.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:20 ,  Issue: 1 )