By Topic

Dictionary Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ivana Tosic ; She is currently a postdoctoral researcher at the Redwood Center for Theoretical Neuroscience, University of California at Berkeley, United States, where she works on the intersection of image processing and computational neuroscience domains. ; Pascal Frossard

We describe methods for learning dictionaries that are appropriate for the representation of given classes of signals and multisensor data. We further show that dimensionality reduction based on dictionary representation can be extended to address specific tasks such as data analy sis or classification when the learning includes a class separability criteria in the objective function. The benefits of dictionary learning clearly show that a proper understanding of causes underlying the sensed world is key to task-specific representation of relevant information in high-dimensional data sets.

Published in:

IEEE Signal Processing Magazine  (Volume:28 ,  Issue: 2 )