By Topic

Linear Subspace Learning-Based Dimensionality Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xudong Jiang ; Nanyang Technological University, Singapore.

The ultimate goal of pattern recognition is to discriminate the class membership of the observed novel objects with the minimum misclassification rate. An observed object is often represented by a high dimensional real-valued vector after some preprocessing while its class membership can be represented by a much lower dimensional binary vector. Thus, in the discriminating process, a pattern recognition system intrinsically reduces the dimensionality of the input data into the number of classes.

Published in:

IEEE Signal Processing Magazine  (Volume:28 ,  Issue: 2 )