By Topic

Geometric Manifold Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We present algorithms for analyzing massive and high dimensional data sets motivated by theorems from geometry and topology. Optimization criteria for computing data projections are discussed and skew radial basis functions (sRBFs) for constructing nonlinear mappings with sharp transitions are demonstrated. Examples related to modeling dynamical systems, including hurricane intensity and financial time series prediction, are presented. The article represents an overview of the authors' and collaborators' work in manifold learning.

Published in:

Signal Processing Magazine, IEEE  (Volume:28 ,  Issue: 2 )