By Topic

The Sensing Capacity of Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yaron Rachlin ; Draper Laboratory in Cambridge, MA, USA ; Rohit Negi ; Pradeep K. Khosla

This paper demonstrates fundamental limits of sensor networks for detection problems where the number of hypotheses is exponentially large. Such problems characterize many important applications including detection and classification of targets in a geographical area using a network of seismic sensors, and detecting complex substances with a chemical sensor array. We refer to such applications as large-scale detection problems. Using the insight that these problems share fundamental similarities with the problem of communicating over a noisy channel, we define the “sensing capacity” and lower bound it for a number of sensor network models. The sensing capacity expression differs significantly from the channel capacity due to the fact that for a fixed sensor configuration, codewords are dependent and nonidentically distributed. The sensing capacity provides a bound on the minimal number of sensors required to detect the state of an environment to within a desired accuracy. The results differ significantly from classical detection theory, and provide an intriguing connection between sensor networks and communications. In addition, we discuss the insight that sensing capacity provides for the problem of sensor selection.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 3 )