By Topic

Distributed Source Coding Using Abelian Group Codes: A New Achievable Rate-Distortion Region

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A distributed source coding problem with a joint distortion criterion that depends on the sources and the reconstruction is considered in this work. While the prevalent trend in information theory has been to prove achievability results using Shannon's random coding arguments, using structured random codes offer rate gains over unstructured random codes for many problems. Motivated by this, a new achievable rate-distortion region (an inner bound to the performance limit) is presented for this problem for discrete memoryless sources based on “good” structured random nested codes built over abelian groups. For certain sources and distortion functions, the new rate region is shown to be strictly bigger than the Berger-Tung rate region, which has been the best known achievable rate region for this problem till now. This is done using numerical plots. Achievable rates for single-user source coding using abelian group codes are also obtained as a corollary of the main coding theorem. It is shown that nested linear codes achieve the Shannon rate-distortion function in the arbitrary discrete memoryless case.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 3 )