By Topic

Minimization of Order Tardiness Through Collaboration Strategy in Multifactory Production System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chung, S.H. ; Hong Kong Polytech. Univ., Hong Kong, China ; Chan, F.T.S. ; Wai Hung Ip

Distributed planning problems are commonly found in today's production environment because of supply chain integration. Different factories vertically partner up and work collaboratively to increase their overall competitiveness. Although they are collaborating, factories are independent entities belonging to different companies in many practical situations. They individually face their own production capacity constraints, maximizing their own benefits, and planning production to satisfy their customer orders, especially in fulfilling those committed ones. This scenario is similar to some factories producing electrical home appliances in Mainland China. The objective of this paper is to study the collaboration strategy that they adopted, and propose a new strategy for better collaboration. For simulation, a new hybrid genetic algorithm with exhaustive searching for fine local searching is proposed to determine the production schedule in the factories. The proposed algorithm is compared with a set of well known benchmarking problems, and the results demonstrate that it outperforms many other existing algorithms. Moreover, a number of numerical examples have also been run to demonstrate the strength of the new collaboration strategy in minimizing the tardiness in new orders, meanwhile avoiding tardiness in committed orders.

Published in:

Systems Journal, IEEE  (Volume:5 ,  Issue: 1 )