By Topic

Thickness limitations of SiO2 gate dielectrics for MOS ULSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wright, P.J. ; Center for Integrated Syst., Stanford Univ., CA, USA ; Saraswat, K.C.

The impact of gate leakage current on MOSFET performance is examined and limits on gate oxide thickness for static and dynamic logic are determined. Leakage current has been found to be a greater problem for static logic than for dynamic logic circuits. Gate leakage current limits the minimum oxide thickness to approximately 2 nm for static logic configurations, and to approximately 3 nm in dynamic logic circuits. A poor drain design can become a limiting factor for dynamic logic circuits and raise the minimum oxide thickness required. Switching delay of static logic is relatively immune to the effects of leakage current. A MISFET with a 2.6 nm thick gate insulator of Si3N 4 has been fabricated showing typical drain current characteristics, but with a large amount of gate leakage current

Published in:

Electron Devices, IEEE Transactions on  (Volume:37 ,  Issue: 8 )